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This paper examines non-linear free vibration characteristics of "rst and second vibration
modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of
motion for the shells based on the "rst order shear deformation and classical shell theories
are derived by means of Hamilton's principle. We apply Galerkin's procedure to the
equations of motion in which eigenvectors for "rst and second modes of linear vibration
obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear
ordinary di!erential equations are derived in terms of amplitudes of the "rst and second
vibration modes. Backbone curves for the "rst and second vibration modes are solved
numerically by the Gauss}Legendre integration method and the shooting method
respectively. The e!ects of lamination sequences and transverse shear deformation on the
behavior are discussed. It is also shown that the motion of the "rst vibration mode a!ects the
response for the second vibration mode.
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1. INTRODUCTION

Fiber-reinforced plastics (FRP) are superior in some mechanical properties (e.g., high
sti!ness-to-weight ratio, high strength-to-weight ratio) to isotropic materials, and have been
extensively used in many industrial "elds. Therefore, there have been a number of papers
concerned with non-linear vibrations of laminated plates and shells.

Chia [1, 2] and Sathyamoorthy [3] collected and reviewed the comprehensive literature
dealing with non-linear vibrations of laminated plates. Hui [4] investigated non-linear free
vibrations of antisymmetrically laminated plates with geometric imperfections by using
Lindstedt's perturbation method. A single-mode analysis of the non-linear dynamic
free response of a curved, simply supported orthotropic panel, which is based on the
Donnell}Mushtari}Vlasov shell theory, was studied by Raouf and Palazotto [5]. The
e!ects of transverse shear deformation, rotatory inertia and geometrically initial
imperfection on non-linear vibration and postbuckling of antisymmetric angle-ply
cylindrical thick panels and generally laminated circular cylindrical thick shells with
non-uniform boundary conditions were discussed by Fu and Chia [6, 7]. Xu et al. [8]
derived non-linear equations of transverse motion for a generally laminated, truncated
conical shell and solved the non-linear vibration problem by the method of harmonic
22-460X/00/280405#22 $35.00/0 ( 2000 Academic Press
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balance. Cheung and Fu [9] presented non-linear static and dynamic analysis of the
symmetric cross-ply shallow spherical shell based on the Timoshenko}Mindlin kinematic
hypothesis. On isotropic materials, Kobayashi and Leissa [10] examined large-amplitude
vibrations of doubly curved thick shallow shells by the Gauss}Legendre integration
method, and the non-linear vibration and dynamic instability of thin shallow spherical and
conical shells subjected to periodic transverse and in-plane loads were reported by Ye [11].
However, no papers have been presented for non-linear free vibration characteristics of the
"rst and second (asymmetric "rst) vibration modes of generally laminated shallow shells
reported here.

This paper examines non-linear vibration characteristics of the "rst and second vibration
modes of generally laminated shallow shells with rigidly clamped edge condition. For the
purpose of this study, non-linear equations of motion for the shells based on "rst order
shear deformation theory as well as classical shell theory are derived by means of
Hamilton's principle. Next, we discretize the non-linear governing equation by using
Galerkin's procedure. However, when the laminations sequence is symmetric angle-ply, the
mode shapes are complex (see, for example, references [12, 13]) and it is di$cult to properly
choose trial functions for Galerkin's procedure. Thus, we use the linear strain}displacement
relations and calculate eigenvectors of the shells by the Ritz method. By employing the
eigenvectors for linear "rst and second vibration modes as trial functions, we apply
Galerkin's procedure to the non-linear governing equation. Then simultaneous non-linear
ordinary di!erential equations in terms of the "rst and second modes are derived. It is
explained clearly that responses for the second vibration mode are a!ected by a quadratic
non-linear term that is not considered in a single-mode analysis. Non-linear dynamic
behaviors of the "rst and second modes of the shells are solved numerically by the
Gauss}Legendre integration method and the shooting method, respectively. The e!ects of
shear deformation and lamination sequence on the behavior are discussed.

2. EQUATIONS OF MOTION

Figure 1 shows a laminated shallow shell of rectangular planform, which consists of
N layers of an orthotropic sheet, with lengths a and b, thickness h and radii of curvature R

x
and R

y
. The co-ordinate system (x, y, z) is taken in the midsurface of the shell, as shown in
Figure 1. Geometry of a laminated shallow shell and co-ordinate systems.
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the "gure. The principal directions of elasticity are denoted by ¸ and ¹, and h
k
is the angle

between ¸- and x-axis in the kth layer. The displacement components are u, v and w at an
arbitrary point of the shell in the x, y and z directions respectively.

According to the "rst order shear deformation theory (FSDT) and the classical shell
theory (CST), it is assumed that the in-plane displacements u and v are linear functions of
co-ordinate z, and that the transverse displacement w is constant through the thickness of
the shell. While the CST adopts Kirchho! 's hypothesis, the FSDT does not adopt it (i.e., it
cannot be assumed that normals to the midsurface remain normal to it after deformation).
The displacement "eld based on the FSDT or CST can be given in the following form:

u"u
0
#Dzt

x
!(1!D)zw

0,x
, v"v

0
#Dzt

y
!(1!D)zw

0,y
, w"w

0
, (1)

where u
0
, v

0
and w

0
are the displacements at the midsurface, t

x
and t

y
are the rotations of

the midsurface about the y- and x-axis respectively. Indicator D is the tracing constant
which takes 1 and 0 for the FSDT and CST respectively. The non-linear
strain}displacement relations of the shallow shell can be written as
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In these equations, the subscripts following a comma stand for partial di!erentiation.
The constitutive relations of the shell can be expressed as follows:
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and N, M and Q are the stress, moment and shear stress resultants respectively. Constants
A

ij
, B

ij
, D

ij
and S

ij
are the sti!ness coe$cients of the shell, which are derived from
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in which C(k)
ij

are the sti!ness matrix elements expressing the stress}strain relation in the kth
layer, K2 is the shear correction factor and h

k
is the distance from the midsurface to the

upper surface of the kth layer.
The kinetic energy of the shell can be written as
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where o is mass density of the shell. The strain energy of the shell is given by

;"
1

2 P
b@2

~b@2
P

a@2

~a@2

(N
x
e0
x
#N

y
e0
y
#N

xy
e0
xy
#Q

x
e
xz
#Q

y
e
yz
#M

x
i
x
#M

y
i
y
#M

xy
i
xy

) dxdy.

(12)

By substituting equations (11) and (12) into Hamilton's principle

P
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and taking the variation in consideration of equations (2)}(4), the governing equations are
derived as follows:
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For convenience of the analysis, the following dimensionless quantities are introduced:
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and q is non-dimensional time. By using equation (17), equations (14)}(16) can be rewritten
in non-dimensional forms as
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3. LINEAR ANALYSIS

In this section, linear strain}displacement relations are considered. Linear natural
frequencies and eigenfunctions of laminated shallow shells based on the FSDT and CST are
obtained using the Ritz method.

The maximum kinetic energy of the shell is given by
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in which j is the non-dimensional linear natural frequency, which is related to the linear
natural frequency u by j"ua2(oh/D

0
)1@2. The maximum strain energy of the shell is

expressed in the matrix form
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In the present study, we consider shallow shells with rigidly clamped edges. The boundary
conditions are
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x
"t

y
"0 at m"$1 and g"$1 (for FSDT),

(28)
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,m"=,g"0 at m"$1 and g"$1 (for CST).
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The displacements of the shell are approximated using power functions [14}16] which
satisfy the boundary conditions (28) as
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in which b takes 1 and 2 for the FSDT and CST respectively, and a
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unknown coe$cients. Substituting equation (29) into equations (25) and (26) and using the
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the frequency equation is derived as
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The elements of the matrix are given in Appendix A. The non-dimensional frequency j is
obtained as the eigenvalue of the equation, and the eigenfunctions of linear vibration are
determined by calculating eigenvectors a
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, b
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, c
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, d
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and e
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. In the case of the CST, it is

noted that d
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4. NON-LINEAR ANALYSIS

In this paper, we examine non-linear vibration characteristics of "rst and second
vibration modes of the shells. Thus, we assume that the displacements can be expressed by
using the eigenfunctions of two vibration modes which are obtained in the previous section:
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where time functions;(q), <(q),=(q), X(q) and> (q) with subscripts 1 and 2 are amplitudes
of the "rst and second modes respectively. In a similar way, coe$cients a
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, b

ij
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and e
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with superscripts (1) and (2) denote eigenvectors of the "rst and second modes respectively.
By substituting equation (32) into the equations of motion (19)}(23) and applying
Galerkin's procedure,
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the following equations are obtained:
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W1
=

2,qq#C(2)
W2
;

2
#C(2)

W3
<

2
#C(2)

W4
=

2
#C(2)

W5
X

2
#C(2)

W6
>

2
#C(2)

W7
;

1
=

2

#C(2)
W8
<

1
=

2
#C(2)

W9
;

2
=

1
#C(2)

W10
<

2
=

1
#C(2)

W11
=

1
=

2
#C(2)

W12
=

1
X

2
(35)

#C(2)
W13
=

1
>

2
#C(2)

W14
=

2
X

1
#C(2)

W15
=

2
>

1
#C(2)

W16
=2

1
=

2
#C(2)

W17
=3

2
"0,

C(2)
X1

X
2,qq

#C(2)
X2
;

2
#C(2)

X3
<

2
#C(2)

X4
=

2
#C(2)

X5
X

2
#C(2)

X6
>

2
#C(2)

X7
=

1
=

2
"0,

C(2)
Y1
>

2,qq
#C(2)

Y2
;

2
#C(2)

Y3
<

2
#C(2)

Y4
=

2
#C(2)

Y5
X

2
#C(2)

Y6
>

2
#C(2)

Y7
=

1
=

2
"0.

Coe$cients (C(1)
U1

, C(1)
V1

, etc.) in the above equations are obtained by integrating equation (33)
numerically by the use of the software package Mathematica [17]. In equations (34) and (35),
X

i
and >

i
vanish for the case of the CST.

If in-plane and rotatory inertias in equations (34) and (35) are neglected, two sets of
ordinary di!erential equations in terms of the transverse displacements =

1
and =

2
are

derived by eliminating ;
1
, ;

2
, <

1
, <

2
, X

1
, X

2
, >

1
and >

2
from equations (34) and (35):

=
1, qq#u2

1
=

1
#G

1
=2

1
#G

2
=2

2
#G

3
=3

1
#G

4
=

1
=2

2
"0,

(36)

=
2,qq#u2

2
=

2
#G

5
=

1
=

2
#G

6
=2

1
=

2
#G

7
=3

2
"0,

where u
i

and G
i

are the non-dimensional linear natural frequencies and the
non-dimensional coe$cients of the non-linear terms respectively. As can be seen from
equation (36),=

2
"0 as long as the shell does not possess internal resonances between the

"rst and second modes when=
1

oscillates. However, when=
2

oscillates,=
1

is activated
by the non-linear term G

2
=2

2
. Thus, the motion of the "rst mode a!ects the response for the

second mode through the non-linear terms G
5
=

1
=

2
and G

6
=2

1
=

2
. The e!ect of the

quadratic non-linear term G
5
=

1
=

2
on the non-linear vibration of the second mode is not

considered in a single-mode analysis with considers only the second mode. In the case of #at
plates, there are no quadratic non-linear terms (e.g., G

2
=2

2
and so on), and the modal

interaction between the "rst and second modes does not occur. Consequently, this modal
interaction is speci"c to shells.

Since this paper does not treat shells with internal resonances between the "rst and
second modes,=

2
can be neglected to examine non-linear free vibrations for the "rst mode:

=
1,qq#u2

1
=

1
#G

1
=2

1
#G

3
=3

1
"0. (37)
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Performing some manipulations, the equation expressing the relationship between
non-linear frequency u

nl
and the amplitude=

1
is derived from equation (37) as [10]

u
nl
"

n

:W1max
W1min

d=
1

JC!u2
1
=2

1
!2

3
G

1
=3

1
!1

2
G

3
=4

1

, (38)

in which

C"u2
1
=2

1 max
#2

3
G

1
=3

1 max
#1

2
G

3
=4

1 max
, (39)

and=
1,max

and=
1min

are the maximum and minimum amplitudes respectively. Using the
conditions,

=
1
"=

1max
, =

1,q"0,
(40)

=
1
"=

1min
, =

1,q"0,

non-linear frequencies, which are dependent upon the amplitude, of the "rst mode are
calculated by applying the Gauss}Legendre integration method to equation (38). For
further details, the reader should refer to reference [10].

On the other hand, in order to examine non-linear vibration characteristics for the
second mode, we use the shooting method [18, 19]. According to the shooting method, we
convert equation (36) into "rst-order di!erential equations

dz

dtL
"Z, (41)

where

z"[z
1
, z

2
, z

3
, z

4
]T"[=

1
,=Q

1
,=

2
,=Q

2
]T,

Z"[Z
1
, Z

2
, Z

3
, Z

4
]T,

Z
1
"z

2
,

(42)

Z
2
"!Mu2

1
z
1
#(G

1
#G

3
z
1
)z2

1
#(G

2
#G

4
z
1
)z2

3
N/u2

2
,

Z
3
"z

4
,

Z
4
"!z

3
!M(G

5
#G

6
z
1
)z

1
z
3
#G

7
z3
3
!Fcos(u

nl
/u

2
)tL N/u2

2
.

Here, tL is a new time variable which is de"ned as tL"u
2
q, a dot denotes the derivative with

respect to tL , and F and u
nl

are the amplitude and frequency of an additional harmonic
excitation. We calculate frequency}response curves corresponding to backbone curves on
the assumption that F is very small.
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5. NUMERICAL RESULTS AND DISCUSSION

Some numerical examples on non-linear free vibration behavior of laminated shallow
shells with rigidly clamped edges are presented in this section. It is assumed that the shells
consist of graphite-epoxy layers and each layer has the same thickness and the following
material properties:

E
L
"138 GPa, E

T
"8)96 GPa, G

LT
"7)1 GPa, G

LZ
"E

T
/2, l

LT
"0)3.

Unless speci"ed, the FSDT is employed in the following numerical examples and the shear
correction factor K2 is taken as K2"5/6.

5.1. NON-LINEAR VIBRATION OF THE FIRST VIBRATION MODE

Not only linear natural frequencies but also non-linear frequencies of the shells are
dependent upon the number of series (29). Table 1 shows convergence characteristics of
linear and non-linear frequencies as the number of terms I and J of equation (29) increases.
The calculation is carried out for a symmetric laminated angle-ply shallow shell
(h"453/!453/45) with square planform. Two types of the thickness ratios (H"0)01, 0)1)
are considered here. With an increase in number of the series, the linear and non-linear
frequencies converge within three or four signi"cant digits. They can be regarded as
well-converged if the series are equal to or larger than I]J"8]8. Therefore, I]J"8]8
is used in the following numerical examples. On the other hand, j

1
is obtained by

considering the e!ects of in-plane and rotatory inertias (the Ritz method), whereas u
1

is
obtained by neglecting the e!ects (Galerkin's procedure). While u

1
agrees fairly with j

1
for

the thin shell (H"0)01), u
1
is slightly higher than j

1
for the thick shell. However, the errors

are less than 1%, and it can be said that the analysis neglecting the in-plane and rotatory
inertias is valid to study the non-linear vibration.

Non-linear vibration characteristics for the "rst vibration mode of the shells are shown in
Figures 2}5. The linear natural frequencies u

1
of the shells used in Figures 2}4 and 5 are

listed in Tables 2 and 3 respectively.
TABLE 1

Convergence of frequency parameters on the ,rst vibration mode of symmetric angle-ply
laminated shallow shells (h"453/!453/453, r

x
"r

y
"10, a"1)

u
nl

H("h/a) I]J u
1
(j

1
) =

1max
"1 =

1max
"2

0)01 4]4 142)9 (142)9) 140)1 196)1
6]6 140)2 (140)1) 147)0 213)4
8]8 140)1 (140)1) 147)1 213)7

10]10 140)1 (140)1) 147)1 213)7

0)1 4]4 63)27 (62)90) 89)23 139)6
6]6 63)17 (62)80) 88)78 138)7
8]8 63)16 (62)79) 88)70 138)5

10]10 63)15 (62)78) 88)71 138)5



Figure 2. E!ect of lamination sequence on non-linear vibration of the "rst mode (a"1, r
x
"10, r

x
/r

y
"1,

H"0)01): (a) u
nl
/u

1
versus =

1max
, (b) D=

1min
D!=

1max
versus =

1max
: **, h"453/!453/453; } }} } },

h"03/903/03; } ) } ) } ) }, h"453/!453; ) ) ) ) ) ) ) , h"03/903.

Figure 3. E!ect of radius of curvature on non-linear vibration of the "rst mode (h"453/!453/453, a"1,
r
x
/r

y
"1, H"0)01): (a) u

nl
/u

1
versus=

1max
, (b) D=

1min
D!=

1max
versus=

1max
:**, r

x
"100; } } } } }, r

x
"50;

) ) ) ) ) ) ) , r
x
"25; } ) } ) } ) }, r

x
"10.
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Figure 2 presents the e!ect of lamination sequences of spherical shells on the non-linear
free vibrations. It was reported in reference [10] that absolute value of maximum inward
displacement =

1min
is larger than that of maximum outward displacement =

1max
in

a vibratory cycles. Figures 2(a) and 2(b) show the ratio of the non-linear frequency to the
linear frequency u

nl
/u

1
and the di!erence between the maximum inward and outward

displacements D=
1min

D!=
1max

respectively. It is found from Figure 2(a) that soft-spring
behavior appears in all lamination sequences. We observe the tendency that the increase or
decrease in the frequency is more pronounced for the lamination sequences which include
the e!ect of bending}stretching coupling (h"453/!453, 03/903) than for the lamination
sequences which do not include the e!ect (h"03/903/03, 453/!453/453). It can be seen in
Figure 2(b) that the di!erence D=

1min
D!=

1max
increases radically with an increase of

=
1max

.



Figure 4. E!ects of curvature and aspect ratios on non-linear vibration of the "rst mode (h"453/!453/453,
r
x
"10, H"0)01): (a) u

nl
/u

1
versus =

1max
, (b) D=

1min
D!=

1max
versus =

1max
: +++, r

x
/r

y
"1, a"1; **

r
x
/r

y
"0, a"1; } } }} }, r

x
/r

y
"!1, a"1; } ) } ) } )}, r

x
/r

y
"1, a"1)5; ) ) ) ) ) ) ) , r

x
/r

y
"1, a"2.

Figure 5. E!ect of thickness ratio on non-linear vibration of the "rst mode (h"453/!453/453, a"1, r
x
"10,

r
x
/r

y
"1): (a) u

nl
/u

1
versus=

1max
, (b) D=

1min
D!=

1max
versus=

1max
:**, H"0)01; } } } } }, H"0)02; ) ) ) ) ) ) ) ,

H
x
"0)04; } ) } ) } ) }, H

x
"0)1.
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Figure 3 shows the e!ect of radius of curvature on the non-linear dynamic properties of
a spherical symmetric laminated shallow shell (h"453/!453/453). As the radius of
curvature increases, the hard-spring response becomes strong, and the soft-spring behavior
does not appear in the shells with r

x
*25. However, it should be noted that there is the

di!erence D=
1min

D!=
1max

in the shells with r
x
*25. Though the backbone curves for

r
x
"100 almost agree with those for r

x
"50, D=

1min
D!=

1max
for r

x
"50 is nearly the

double of that for r
x
"100 during 1)=

1max
)2.

In Figure 4 the e!ects of curvature ratio (r
x
/r

y
) and aspect ratio of a symmetric laminated

shallow shell with r
x
"10 on the non-linear vibration is presented. It is signi"cant to note

that r
x
/r

y
"1, 0 and !1 correspond to spherical, cylindrical and hyperbolic paraboloid

shells respectively. The backbone curves do not exhibit soft-spring behavior except the shell
with r

x
/r

y
"1 and a"1. With decreases in the curvature ratio or increase in the aspect

ratio, the e!ect of quadratic non-linear term G
2

becomes smaller and D=
1min

D!=
1max



TABLE 2

Frequency parameters u
1

of shallow shells used in Figures 2}4

h a r
x

r
x
/r

y
u

1
Figures

453/!453/453 1 10 1 140)1 2, 3, 4
03/903/03 1 10 1 150)9 2
453/!453 1 10 1 129)3 2

03/903 1 10 1 133)9 2
453/!453/453 1 25 1 93)01 3
453/!453/453 1 50 1 83)97 3
453/!453/453 1 100 1 81)54 3
453/!453/453 1 10 0 103)2 4
453/!453/453 1 10 !1 98)81 4
453/!453/453 1)5 10 1 178)6 4
453/!453/453 2 10 1 248)1 4

TABLE 3

Comparison of frequency parameters u
1

of symmetric angle-ply
laminated shallow shells (h"453/!453/453, r

x
"r

y
"10,

a"1)

u
1

H CST FSDT

0)01 140)3 140)1
0)02 99)48 98)50
0)04 86)04 81)77
0)1 81)86 63)16
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decreases. Especially, there does not exist D=
1min

D!=
1max

for the hyperbolic paraboloid
shell (because of G

2
"0).

Figure 5 shows the non-linear vibration characteristics for symmetric angle-ply
laminated shells with di!erent thickness ratios. In order to examine the e!ect of the
transverse shear deformation, the results obtained by the FSDT (thick line) are compared
with those by the CST (thin line). The comparison of linear natural frequencies is tabulated
in Table 3. In Figure 5(a), u

1
denotes the linear natural frequency obtained by the FSDT. It

is seen in Figures 5(a) and 5(b) that the hard-spring behavior becomes stronger and
D=

1min
D!=

1max
decreases with an increase of the thickness ratio. Further, with the

increase, the results obtained by the FSDT deviate from those by the CST, and it can be said
that the FSDT should be adopted for non-linear vibration analyses of moderately thick
shells (H*0)04).

5.2. NON-LINEAR VIBRATION OF THE SECOND VIBRATION MODE

First of all, the in#uence of the "rst vibration mode on non-linear vibrations of the second
mode is examined. The two-mode analysis considering both =

1
and =

2
is compared in



Figure 6. Comparison of single- and two-mode analyses on non-linear vibration of the second mode
(h"453/!453/453, a"1, r

x
"10, r

x
/r

y
"1): (a) u

nl
/u

2
versus =

max
, (b) D=

min
D!=

max
versus =

max
: **,

two-mode analysis; } }} } }, single-mode analysis.
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Figure 6 with the single-mode analysis neglecting =
1

(considering only =
2
). In this

calculation, we treat symmetric angle-ply laminated shells (h"453/!453/453)
with H"0)01 and 0)1 and use I]J"8]8. In Figure 6, =

max
is de"ned as

=
max

"(=
1
#=

2
)
max

, and solid and broken lines denote the results obtained by the two-
and single-mode analyses respectively. It is seen in Figure 6(a) that the frequency ratios
obtained by the single-mode analysis are smaller than those obtained by the two-mode
analysis. The di!erence between maximum and minimum displacements is shown in
Figure 6(b). The di!erence between them is considered in the two-mode analysis, but the
di!erence is neglected in the single-mode analysis (i.e., D=

min
D"=

max
). Therefore, we can see

the necessity of the "rst vibration mode for studying non-linear dynamic properties of the
second vibration mode of the shell. Furthermore, because the errors on the backbone curve
and the di!erence, D=

min
D!=

max
, are more pronounced for the thin shell (H"0)01) than

for the thick shell (H"0)1), we conclude that the in#uence of the "rst vibration mode
becomes stronger for the thin shell than for thick shell.

The convergence of the present series solutions for linear and non-linear frequencies of
the second mode in the case of symmetric angle-ply laminated shells (h"453/!453/453)
with H"0)01 and 0)1 is shown in Table 4. The maximum error between the last two
columns is less than 1%. In the calculation for the second mode, I]J"8]8 is used from
a practical point of view.

Figures 7, 8, 9 and 10 present, respectively, the e!ects of lamination sequence, radius of
curvature, and aspect ratios, and thickness ratio on the non-linear vibration of the second
mode. Tables 5 and 6 show the linear natural frequencies u

2
of the shells used in Figures

7}9 and 10 respectively. The linear natural frequencies of the second and third modes of
antisymmetric angle-ply (h"453/!453) and asymmetric cross-ply (h"03/903) laminated
shells are close to each other when a"1. In order to examine the non-linear vibration of the
second mode of such shells, we must consider the third mode in the analysis. Since the
present paper does not treat the shells with one-to-one internal resonance, we use a"1)25
in Figure 7.

It is found from Figures 7(a)}10(a) that all responses of the second mode are hard-spring
type because the frequency ratio u

nl
/u

2
increases with an increase of the amplitude. It is also

observed that a tendency on the frequency ratio of the second mode is di!erent from that of



TABLE 4

Convergence of frequency parameters on the second vibration mode of symmetric angle-ply
laminated shallow shells (h"453/!453/453, r

x
"r

y
"10, a"1)

u
nl

H("h/a) I]J u
2
(j

2
) =

max
"1 =

max
"2

0)01 4]4 184)5 (184)5) 248)4 396)2
6]6 171)1 (171)0) 274)4 467)4
8]8 171)0 (170)9) 276)1 471)1

10]10 171)0 (170)9) 276)7 472)3

0)1 4]4 102)4 (101)1) 189)9 332)1
6]6 101)0 (99)65) 198)6 352)2
8]8 101)0 (99)62) 199)4 353)9

10]10 100)9 (99)62) 199)2 353)9

Figure 7. E!ect of lamination sequence on non-linear vibration of the second mode (a"1)25, r
x
"10, r

x
/r

y
"1,

H"0)01): (a) u
nl
/u

2
versus=

max
, (b) D=

min
D!=

max
versus=

max
:**, h"453/!453/453; } } } } }, h"03/903/03;

} ) } )} ) }, h"453/!453; ) ) ) ) ) ) ) , h"03/903.

Figure 8. E!ect of radius of curvature on non-linear vibration of the second mode (h"453/!453/453, a"1,
r
x
/r

y
"1, H"0)01): (a) u

nl
/u

2
versus =

max
, (b) D=

min
D!=

max
versus =

max
: **, r

x
"100; } } } }}, r

x
"50;

) ) ) ) ) ) ) , r
x
"25; } ) } ) } ) }, r

x
"10.
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Figure 9. E!ects of curvature and aspect ratios on non-linear vibration of the second mode (h"453/!453/453,
r
x
"10, H"0)01): (a) u

nl
/u

2
versus =

max
, (b) D=

min
D!=

max
versus =

max
: +++, r

x
/r

y
"1, a"1; ** r

x
/r

y
"0,

a"1; }} } } }, r
x
/r

y
"!1, a"1; } ) } )} ) }, r

x
/r

y
"1, a"1)5; ) ) ) ) ) ) ) , r

x
/r

y
"1, a"2.

Figure 10. E!ect of thickness ratio on non-linear vibration of the second mode (h"453/!453/453, a"1,
r
x
"10, r

x
/r

y
"1): (a) u

nl
/u

2
versus =

max
, (b) D=

min
D!=

max
versus =

max
: **, H"0)01; } } } }}, H"0)02;

) ) ) ) ) ) ) , H
x
"0)04; } ) } ) } ) }, H

x
"0)1.
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the "rst mode (For example, the frequency ratio at=
max

"2 of the "rst mode is larger in the
order of (h"453/!453)'(h"03/903)'(h"453/!453/453)'(h"03/903/03) (Figure 2(a)),
while the order for the second mode is (h"03/903/03)'(h"03/903)'(h"453/!453/453)'
(h"453/!453) (Figure 7(a)).) Therefore, it can be concluded that the frequency ratio is also
dependent upon the vibration mode.

In contrast to the results of the frequency ratio, the results of the di!erence D=
min

D!=
max

of the second mode are the same tendency as that of the "rst mode because the di!erence
decreases with an increase of radius of curvature (Figure 8(b)), the di!erence for the
hypabolic shell (r

x
/r

y
"!1) becomes zero (Figures 9(b)) and so on.

Finally, we mention the e!ect of the transverse shear deformation on the non-linear
vibration of the second mode shown in Figure 10. In Figure 10, thick and thin lines denote
the results obtained by the FSDT and CST respectively. The comparison of linear natural
frequencies is shown in Table 6. From Figure 10 and Table 6, it is found that the larger the



TABLE 5

Frequency parameters u
2

of shallow shells used in Figures 7}9

h a r
x

r
x
/r

y
u

2
Figures

453/!453/453 1 10 1 171)0 8, 9
453/!453/453 1)25 10 1 197)1 7

03/903/03 1)25 10 1 186)7 7
453/!453 1)25 10 1 170)9 7

03/903 1)25 10 1 170)4 7
453/!453/453 1 25 1 144)4 8
453/!453/453 1 50 1 140)2 8
453/!453/453 1 100 1 139)1 8
453/!453/453 1 10 0 149)5 9
453/!453/453 1 10 !1 148)2 9
453/!453/453 1)5 10 1 224)7 9
453/!453/453 2 10 1 296)7 9

TABLE 6

Comparison of frequency parameters u
2

of symmetric angle-ply
laminated shallow shells (h"453/!453/453, r

x
"r

y
"10,

a"1)

u
2

H CST FSDT

0)01 171)6 171)0
0)02 148)2 145)5
0)04 141)7 131)6
0)1 139)9 101)0
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thickness ratio of the shell becomes, the larger the error between the FSDT and CST
solutions become. The tendency for the second mode is the same as that for the "rst
mode.

6. SUMMARY AND CONCLUSIONS

Non-linear vibration characteristics of the "rst and second (asymmetric "rst) vibration
modes of laminated shallow shells with rigidly clamped edges have been reported. In the
analysis, the displacements of the shell were approximated by the power series which are
eigenvectors of the "rst and second vibration modes calculated by the Ritz method (linear
analysis). We examined the convergence characteristics of series solutions, and showed that
linear and non-linear frequencies converged with an increase of the series.

It is explained clearly in the analysis that the modal interaction between the "rst and
second modes is induced by the quadratic non-linear terms. We investigated the in#uence of
the "rst mode on the non-linear vibration of the second mode, and revealed that the
di!erence did not occur in the single-mode analysis which considers only the second mode,
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while the di!erence occurred in the two-mode analysis which considers both the "rst
and second modes. Consequently, it can be said that the "rst vibration mode should
be considered to examine the non-linear vibration of asymmetric vibration modes
of shells.

In numerical examples, we demonstrated graphically the e!ects of lamination sequence,
radius of curvature, curvature ratio, aspect ratio and thickness ratio on the non-linear
vibration. We also compared the results obtained by the FSDT with those obtained by the
CST, and showed that the larger the thickness ratio became, the stronger the e!ect of the
transverse shear deformation became. The present paper paid attention not only to the
frequency ratio but also to the di!erence between maximum outward and inward
displacements.
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APPENDIX A

The elements in the matrices of equation (31) are as follows:
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