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This paper examines non-linear free vibration characteristics of first and second vibration
modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of
motion for the shells based on the first order shear deformation and classical shell theories
are derived by means of Hamilton’s principle. We apply Galerkin’s procedure to the
equations of motion in which eigenvectors for first and second modes of linear vibration
obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear
ordinary differential equations are derived in terms of amplitudes of the first and second
vibration modes. Backbone curves for the first and second vibration modes are solved
numerically by the Gauss-Legendre integration method and the shooting method
respectively. The effects of lamination sequences and transverse shear deformation on the
behavior are discussed. It is also shown that the motion of the first vibration mode affects the
response for the second vibration mode.

© 2000 Academic Press

1. INTRODUCTION

Fiber-reinforced plastics (FRP) are superior in some mechanical properties (e.g., high
stiffness-to-weight ratio, high strength-to-weight ratio) to isotropic materials, and have been
extensively used in many industrial fields. Therefore, there have been a number of papers
concerned with non-linear vibrations of laminated plates and shells.

Chia [1, 2] and Sathyamoorthy [3] collected and reviewed the comprehensive literature
dealing with non-linear vibrations of laminated plates. Hui [4] investigated non-linear free
vibrations of antisymmetrically laminated plates with geometric imperfections by using
Lindstedt’s perturbation method. A single-mode analysis of the non-linear dynamic
free response of a curved, simply supported orthotropic panel, which is based on the
Donnell-Mushtari-Vlasov shell theory, was studied by Raouf and Palazotto [5]. The
effects of transverse shear deformation, rotatory inertia and geometrically initial
imperfection on non-linear vibration and postbuckling of antisymmetric angle-ply
cylindrical thick panels and generally laminated circular cylindrical thick shells with
non-uniform boundary conditions were discussed by Fu and Chia [6,7]. Xu et al. [8]
derived non-linear equations of transverse motion for a generally laminated, truncated
conical shell and solved the non-linear vibration problem by the method of harmonic
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balance. Cheung and Fu [9] presented non-linear static and dynamic analysis of the
symmetric cross-ply shallow spherical shell based on the Timoshenko—Mindlin kinematic
hypothesis. On isotropic materials, Kobayashi and Leissa [10] examined large-amplitude
vibrations of doubly curved thick shallow shells by the Gauss-Legendre integration
method, and the non-linear vibration and dynamic instability of thin shallow spherical and
conical shells subjected to periodic transverse and in-plane loads were reported by Ye [11].
However, no papers have been presented for non-linear free vibration characteristics of the
first and second (asymmetric first) vibration modes of generally laminated shallow shells
reported here.

This paper examines non-linear vibration characteristics of the first and second vibration
modes of generally laminated shallow shells with rigidly clamped edge condition. For the
purpose of this study, non-linear equations of motion for the shells based on first order
shear deformation theory as well as classical shell theory are derived by means of
Hamilton’s principle. Next, we discretize the non-linear governing equation by using
Galerkin’s procedure. However, when the laminations sequence is symmetric angle-ply, the
mode shapes are complex (see, for example, references [ 12, 137) and it is difficult to properly
choose trial functions for Galerkin’s procedure. Thus, we use the linear strain-displacement
relations and calculate eigenvectors of the shells by the Ritz method. By employing the
eigenvectors for linear first and second vibration modes as trial functions, we apply
Galerkin’s procedure to the non-linear governing equation. Then simultaneous non-linear
ordinary differential equations in terms of the first and second modes are derived. It is
explained clearly that responses for the second vibration mode are affected by a quadratic
non-linear term that is not considered in a single-mode analysis. Non-linear dynamic
behaviors of the first and second modes of the shells are solved numerically by the
Gauss-Legendre integration method and the shooting method, respectively. The effects of
shear deformation and lamination sequence on the behavior are discussed.

2. EQUATIONS OF MOTION

Figure 1 shows a laminated shallow shell of rectangular planform, which consists of
N layers of an orthotropic sheet, with lengths a and b, thickness h and radii of curvature R,
and R,. The co-ordinate system (x, y, z) is taken in the midsurface of the shell, as shown in

Figure 1. Geometry of a laminated shallow shell and co-ordinate systems.
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the figure. The principal directions of elasticity are denoted by L and T, and 0, is the angle
between L- and x-axis in the kth layer. The displacement components are u, v and w at an
arbitrary point of the shell in the x, y and z directions respectively.

According to the first order shear deformation theory (FSDT) and the classical shell
theory (CST), it is assumed that the in-plane displacements u and v are linear functions of
co-ordinate z, and that the transverse displacement w is constant through the thickness of
the shell. While the CST adopts Kirchhoft’s hypothesis, the FSDT does not adopt it (i.e., it
cannot be assumed that normals to the midsurface remain normal to it after deformation).
The displacement field based on the FSDT or CST can be given in the following form:

u=uo+ Az, — (1 — A)zwg,, v =100+ Az¢y, — (1 — A)zwg,,, W = Wy, (1)
where u,, vy and w, are the displacements at the midsurface, Y, and , are the rotations of
the midsurface about the y- and x-axis respectively. Indicator 4 is the tracing constant
which takes 1 and O for the FSDT and CST respectively. The non-linear

strain—displacement relations of the shallow shell can be written as

0 0 0
&y =6x + 2Ky, & =8, + 2K, & =0, &, =& + 2k,

2
Exz = A(WO,X - uO/Rx + l//x)’ &y, = A(Wo,y - UO/Ry + lﬁy)
in which
‘O?C = Ug,x + WO/Rx + WO,Zx/27 (0)(;) = Uo,y + Wo/Ry + wo!zy/2,
A3)
833} = Ug,y + Vo,x + Wo,xWo,y>
Kx:Alpx,x_(l _A)WO,xxa Ky = AWy,y_(l _A)WO,yya
4)

Kxy = A(wx,y + lpy,x) - 2(1 - A)Wo’xy.

In these equations, the subscripts following a comma stand for partial differentiation.
The constitutive relations of the shell can be expressed as follows:

N B A B|(e° s
NS ®
0, _ Saa Sas [[&y
{Qx} B |:S45 Sss:|{5xz}7 ©)

where
N:{Nxs Nysny}Ta M: {Mx» Mys Mxy}T
All AlZ AIG Bll B12 B16 Dll D12 D16
A = A12 A22 A26 s B = B12 B22 B26 s D = DlZ D22 D26 s (7)
A16 A26 A66 Bl6 B26 B66 D16 D26 D66

0 0 .0 0T T
g = {8x7 Eya gxy} , K= {sz Ky» ny}
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and N, M and Q are the stress, moment and shear stress resultants respectively. Constants
D;; and §;; are the stiffness coefficients of the shell, which are derived from

0, \® _C11 Ciz 0 0 Cl()_(k) &x
gy Ci, Cyy O 0 Csy &y
o) =| 0 0 Cus C4s O Eyz > @
Oxz 0 0 Cu4s Css 0 Exz
Oxy _C16 Css 0 0 C66_ Exy
N phy
(Aij, Bij, Dij) = . f Cf.';)(l, z,z%)dz, i,j=1,2,6, )
k=1 Jm_,

N K
S;=K>Y J C¥dz, i,j=4,5, (10)
k=1

h
By

in which CZ?) are the stiffness matrix elements expressing the stress—strain relation in the kth
layer, K? is the shear correction factor and h is the distance from the midsurface to the
upper surface of the kth layer.

The kinetic energy of the shell can be written as

ph b/2

al2 h2
T 3 J {“o,zz + Voi + Woi + 4 B Wi+ lﬁy%)} dxdy,
—b/2d —aj2

(11)

where p is mass density of the shell. The strain energy of the shell is given by
1 (b2 paz
o-if" ]
2 —b/2J —a/2

By substituting equations (11) and (12) into Hamilton’s principle

(N2 + Nys;) + nysgy + 0.6y + 048, + My, + Myk, + M, k,,)dxdy.

(12)

Jtl S(T — Uydi = 0, (13)

and taking the variation in consideration of equations (2)—(4), the governing equations are
derived as follows:

Qx Qy

phuO,lt:Nx,x_’_ny,y_i_ARi’ phUO,tt:ny,x+Ny,y+AR > (14)
X y
N. N,
phWO,tt = - R_ - F + A(Qx,x + Qy,y) + (1 - A)(Mx,xx + 2Mxy,xy + My,yy)
X y
+ (NxWO,x + nyWO,y),x + (nyWO,x + NyWO,y),ya (15)
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3

oh oh?
4 E lpx,tt = A(Mx,x + Mxy,y - Qx)a 4 E wy,tt = A(Mxy,x + My,y - Qy) (16)

For convenience of the analysis, the following dimensionless quantities are introduced:

2x 2y U Vo Wo
=—), =—, U=—, V=— W=—,
. T=% h h h
h R R
OC:%& Hzaz rxzzxa ryzjy, (17)
4a? 4a? 4q? 4a? 1 (D,
A*¥ = — B*=—B, D*= D, Sf=—3S;, =— |—t
D, oh Doh® > YT p, i Ty ph
in which
E h®
Dy = d (13)

12(1 — vLTvTL)’

and 7 is non-dimensional time. By using equation (17), equations (14)—(16) can be rewritten
in non-dimensional forms as

FU:U,rr_N‘f,é_aN‘fr],r]_A%zoa (19)
Iy

_ g g Q) _
F, = V,ﬂ—Néy,,é—otN,,,,,—Azr =0, (20

y

N: N _ _ _ _ _
FW = W,n + — + - A(Qé,é + O‘Qn,n) - 2(1 - A)H(Méy&jé + 2O‘M§n,5n + azMn,nn)

2r,  2r,
— 2H(N§ W,é =+ OCN@,I W’n)’é — ZHOC(Nén W,i =+ OCNHW’,I)’" = 0, (21)
‘//x,rr — 7 Q_V
FX:A< 12 _Mé,é_aM'fﬂ,ﬂ_ﬁ :0, (22)
W ,TT 7 7 Q_
FY:A< 1y2 _Mér”é_aM"’y’_ﬁj’I :0, (23)

where
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N= {Nb Nn’ Nén}Tf M= {Mé7 Mn’ Mérl}T>

{FO & Eén} K = {K¢, Ky ’_Cén}T’

w w
52=U,<+§+HW,2, g =aV, +2 + H?W 2,

(24)

|4
_A<acW,,——r+ﬁ>, Ke= A e—2(1 = HHW g,

iy = Aoy, —2(1 — AHPW Koy = A, + . 0) — 41 — A)HoW .

3. LINEAR ANALYSIS

In this section, linear strain—displacement relations are considered. Linear natural
frequencies and eigenfunctions of laminated shallow shells based on the FSDT and CST are
obtained using the Ritz method.

The maximum kinetic energy of the shell is given by

DoH?)?
8ot

T ax = jl Jl {UZ + V2 W2 4+ %(wi + wﬁ)}dé dy, (25)
-1

-1

in which 4 is the non-dimensional linear natural frequency, which is related to the linear
natural frequency @ by A = wa?*(ph/D¢)'>. The maximum strain energy of the shell is
expressed in the matrix form

U _ DoH? [t (g |T[A* B*|(g
" 8 ) ) k[ [ B* D* ||k
I R I PR P
+4 _”z} [ E5)dédn, 26
{Séz SIS >5k5 géz f 1 ( )

where
= {ed, &0, &0} T = {U s + W/Q2ry), oV, + W/2r,),aU,, + V. " (27)

In the present study, we consider shallow shells with rigidly clamped edges. The boundary
conditions are

W=U=V=y,=y,=0até=+landy==+1 (for FSDT),
(28)
W=U=V=W:=W,=0até=+landy=+1 (for CST)
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The displacements of the shell are approximated using power functions [14-16] which
satisfy the boundary conditions (28) as

I J

U= Z Z al]Uél(é)Uﬂj Z Z al}él 1(1 yz)nj71(1 - 772)9

i=1j=1 i=1j=1

1

V=3 Y byVa@Vul) =3 ¥ by 1=’ =),

i=1j=1

I
—
.

I
—

Yo A+ A= T A+ (=0, (29)

1j=1

S
I
M~
M~
3
N.@
%
M~

i=1j=1 i

lpx z Z dl wxél(é lpxnj(’/’ z Z dij£i71(1 - 52)'71.71(1 - ’72)a

i=1j=1 i=1j=1

=Y Y eitha @O =Y. > e 1 — (L —nd),

i=1j=1 i=1j=1

in which f takes 1 and 2 for the FSDT and CST respectively, and a;;, b;;, ¢;j, d;; and e;; are
unknown coefficients. Substituting equation (29) into equations (25) and (26) and usmg the
conditions for a stationary value of Lagrangian L = T, — U,uux,

oL oL JL oOL 0L

= = = = =0, (30)
the frequency equation is derived as
9 U U U ]
Uaukl Upiju  Uciju Uaiju Ueijuar | [
UII:ijkl Ul/ijkl U}i/ijkl U;jkl by
w w w
Ui Udgiju Ueijir [§ Cua
Vs Uy
Udljkl Ueijkl dkl
Sym. v,
B eijl | \EHl
1)

Taljkl 0 0 0 0
Thiw O 0 0 bu
0

:;LZ Trr'jkl 0 Cri (kzl, 2, ,I,lzl, 2, ,J)
Tfixjkl 0 du
L Sym Tilly]kl | €1

The elements of the matrix are given in Appendix A. The non-dimensional frequency 4 is
obtained as the eigenvalue of the equation, and the eigenfunctions of linear vibration are
determined by calculating eigenvectors ay;, by, ¢y, diy and e;. In the case of the CST, it is
noted that d; and ¢, vanish.
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4. NON-LINEAR ANALYSIS

In this paper, we examine non-linear vibration characteristics of first and second
vibration modes of the shells. Thus, we assume that the displacements can be expressed by
using the eigenfunctions of two vibration modes which are obtained in the previous section:

U= i i {Ui(0a)) + Uy (1)a} Ugi(&) Uy(n),

VoY Y VN + V@b VeV

W= S 3 W0+ Mo Wl W (32
_ Z 5 (XL + X (P} e M

= X X V206l + Va0 )

where time functions U (1), V (1), W (z), X (z) and Y (t) with subscripts 1 and 2 are amplitudes

of the first and second modes respectively. In a similar way, coefficients a;;, b;;, c;;, d;; and e;;

with superscripts (1) and (2) denote eigenvectors of the first and second modes respectively.
By substituting equation (32) into the equations of motion (19)-(23) and applying
Galerkin’s procedure,

1 1 1 1
J‘ J z Z a(l)Uéi U,”dé d"] = O, J J Z Z b(l)Vfl Jdé dr] = O,
-1 -1

-1 i=1j=1 -1 i=1j=1

1 1 I J 1 1
f j Fy Y, Y cOWyW,;dédn =0, J J z 2 AV ety dEdy = 0, (33)
-1 -1

-1 i=1j=1 -1 i=1j=1

J J FYZ Z ‘//yéil#ynjdédnzo (l=1, 2):

- i=1j=1
the following equations are obtained:
CotUt e+ CR Uy + C3Vi + CdWy + CRUX, + CRY, + CHWE + ClyW3 =0,
CHV i+ CHUL + CHV + CUW, + CU X, + CR Y, + CRW?E + CRW3 =0,
COW, o+ CD U, + COLV, + COLW, + CO X, + CLLY, + CDU W,
+ CORV AW + CLUW, + CQ Vo Ws + CGL W+ CG W3 + CW LW X (34)

+ CRL WYL+ s WaXo + C o Wa Y, + C3l W+ C W W3 =0,
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CUX, .+ COUL + CUV + CUW + CRX, + CRY, + CRW?E + CUW3 =0,
CHYy o+ CHUL + CHVL+ COIW L + CRIX, + CRY, + COWE + CIW3 = 0;
cOy COU, + CAV, + Cc? (2) (2) (2)
viVa.o + CppUs + CyaVo + CpuWy + Cs Xy + Cie Yo + Cia Wi W, =0,
C(Z)V C(Z) U C(Z)V C(2) (2) (2) (2)
Ve + CHU, + CRAV, + CEW, + CAX, + CAY, + CAW, W, =0,
C(Z) w C(Z) U C(Z) 1% C(Z) (2) (2) (2)
wiWWo, o+ Gy Uy + Gyl + Cpy Wy + G5 Xo + Gy Yo + G Ul W,
+ CRAV W, + CRAUW, + CP VW + CR LW W, + CPLW X, (35)
+ C2 W Y, + C2 WL X, + CR WL Y, + C2 W2, + C2 W3 =0,
COX, o+ CRU, + CHV, + CHW, + CRX, + CRY, + CEW, W, =0,
CAY, .+ CHU, + CAV, + CEW, + CEX, + CRY, + CEW, W, = 0.

Coefficients (C{}), C{}), etc.) in the above equations are obtained by integrating equation (33)
numerically by the use of the software package Mathematica [17]. In equations (34) and (35),
X; and Y; vanish for the case of the CST.

If in-plane and rotatory inertias in equations (34) and (35) are neglected, two sets of
ordinary differential equations in terms of the transverse displacements W, and W, are
derived by eliminating U;, U,, V4, V,, Xy, X5, Y; and Y, from equations (34) and (35):

Wi e+ CU%W1 + G1W% + GzVV% + G3W? + G4W1W§ =0,
(36)

Wz’” + Q)%WZ + G5W1W2 + G6W%W2 + G7W% = 0,

where ®; and G; are the non-dimensional linear natural frequencies and the
non-dimensional coefficients of the non-linear terms respectively. As can be seen from
equation (36), W, = 0 as long as the shell does not possess internal resonances between the
first and second modes when W, oscillates. However, when W, oscillates, W, is activated
by the non-linear term G, W 3. Thus, the motion of the first mode affects the response for the
second mode through the non-linear terms GsW W, and GeWiW,. The effect of the
quadratic non-linear term GsW W, on the non-linear vibration of the second mode is not
considered in a single-mode analysis with considers only the second mode. In the case of flat
plates, there are no quadratic non-linear terms (e.g., G,W3 and so on), and the modal
interaction between the first and second modes does not occur. Consequently, this modal
interaction is specific to shells.

Since this paper does not treat shells with internal resonances between the first and
second modes, W, can be neglected to examine non-linear free vibrations for the first mode:

Wl,rt =+ (,U%Wl =+ le% =+ G3W? = O (37)
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Performing some manipulations, the equation expressing the relationship between
non-linear frequency w,;, and the amplitude W is derived from equation (37) as [10]

Y
= 38
Wy W dWl > ( )
T €= wiw] =36 W] — 16w
in which
C= CU%W% max + %GIW:ISmax + %G3W? max» (39)

and W ... and W, are the maximum and minimum amplitudes respectively. Using the
conditions,

Wl = Wlmax: Wl,r = 05
(40)
Wl = Wl mins Wl,t = Oa

non-linear frequencies, which are dependent upon the amplitude, of the first mode are
calculated by applying the Gauss-Legendre integration method to equation (38). For
further details, the reader should refer to reference [10].

On the other hand, in order to examine non-linear vibration characteristics for the
second mode, we use the shooting method [18, 19]. According to the shooting method, we
convert equation (36) into first-order differential equations

¢_z, 41
i (41)

where

2=z, 25 23,241 = [Wy, Wi, W, W17,

7= [le Z29 ZS: Z4]T9
Zy =1y

(42)

Z, = —{wiz; + (G1 + G3z1)zi + (G, + Gyzy)z3} /w3,
Z3 = Zy,
Zy = — 23— {(Gs + Gsz1)z123 + G723 — Feos(wy/w,)T}/w3.

Here, { is a new time variable which is defined as { = w,t, a dot denotes the derivative with
respect to £, and F and w,; are the amplitude and frequency of an additional harmonic
excitation. We calculate frequency-response curves corresponding to backbone curves on
the assumption that F is very small.
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5. NUMERICAL RESULTS AND DISCUSSION

Some numerical examples on non-linear free vibration behavior of laminated shallow
shells with rigidly clamped edges are presented in this section. It is assumed that the shells
consist of graphite-epoxy layers and each layer has the same thickness and the following
material properties:

EL = 138 GPa, ET = 896 GPa, GLT = 71 GPa, GLZ = ET/2, VLT = 03

Unless specified, the FSDT is employed in the following numerical examples and the shear
correction factor K2 is taken as K? = 5/6.

5.1. NON-LINEAR VIBRATION OF THE FIRST VIBRATION MODE

Not only linear natural frequencies but also non-linear frequencies of the shells are
dependent upon the number of series (29). Table 1 shows convergence characteristics of
linear and non-linear frequencies as the number of terms I and J of equation (29) increases.
The calculation is carried out for a symmetric laminated angle-ply shallow shell
(0 = 45°/ —45°/45) with square planform. Two types of the thickness ratios (H = 0-01, 0-1)
are considered here. With an increase in number of the series, the linear and non-linear
frequencies converge within three or four significant digits. They can be regarded as
well-converged if the series are equal to or larger than I x J = 8 x 8. Therefore, I x J = 8 x 8
is used in the following numerical examples. On the other hand, A, is obtained by
considering the effects of in-plane and rotatory inertias (the Ritz method), whereas w; is
obtained by neglecting the effects (Galerkin’s procedure). While w; agrees fairly with 4, for
the thin shell (H = 0-01), w, is slightly higher than A, for the thick shell. However, the errors
are less than 1%, and it can be said that the analysis neglecting the in-plane and rotatory
inertias is valid to study the non-linear vibration.

Non-linear vibration characteristics for the first vibration mode of the shells are shown in
Figures 2-5. The linear natural frequencies w; of the shells used in Figures 2-4 and 5 are
listed in Tables 2 and 3 respectively.

TaBLE 1

Convergence of frequency parameters on the first vibration mode of symmetric angle-ply
laminated shallow shells (0 = 45°/ —45°/45°, v, =r, = 10, a = 1)

Wpy
H(= h/a) IxJ wl(}d) Wlmux =1 Wlmux =2
0-01 4x4 142-9 (142-9) 140-1 196-1
6x6 1402 (140-1) 147-0 2134
8x8 140-1 (140-1) 147-1 2137
10x 10 140-1 (140-1) 1471 2137
0-1 4x4 63-27 (62-:90) 89-23 139:6
6x6 63-17 (62-80) 88-78 1387
8x8 6316 (62:79) 8870 1385
10x 10 63-15 (62-78) 8871 1385
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Figure 2. Effect of lamination sequence on non-linear vibration of the first mode (« =1, r, = 10, r/r, = 1,

H :001) (a) wnl/wl versus Wlmax’ (b) ‘Wlmin‘ - Wlmax versus Wlmax: - 0= 450/ _45n/45: _____ >
0 =0°/90°/0% —-—-—-— , 0 =45° —45% - , 0 =0°/90°.
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(b) /‘/'/.
e
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S e
/
/
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Wlmax Wlmax
Figure 3. Effect of radius of curvature on non-linear vibration of the first mode (6 = 45°/ —45°/45°, o =1,

rx/ry =1, H =001): (a) (Unl/(ul versus Wy ax, (b) [W iminl = Wimax versus Wy g ——, 1 = 100; - == -~ s e = 50;

e T =25 - - - , 1 = 10,

Figure 2 presents the effect of lamination sequences of spherical shells on the non-linear

free vibrations. It was reported in reference [10] that absolute value of maximum inward
displacement W, ,;, is larger than that of maximum outward displacement Wi, in
a vibratory cycles. Figures 2(a) and 2(b) show the ratio of the non-linear frequency to the
linear frequency w,;/w; and the difference between the maximum inward and outward
displacements |W il — W1 max respectively. It is found from Figure 2(a) that soft-spring
behavior appears in all lamination sequences. We observe the tendency that the increase or
decrease in the frequency is more pronounced for the lamination sequences which include
the effect of bending-stretching coupling (0 = 45°/—45°, 0°/90°) than for the lamination
sequences which do not include the effect (0 = 0°/90°/0°, 45°/—45°/45°). It can be seen in
Figure 2(b) that the difference |W uiu| — Wi increases radically with an increase of
Wl max-
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Figure 4. Effects of curvature and aspect ratios on non-linear vibration of the first mode (0 = 45°/ —45°/45°,
re =10, H=001): (a) wu/o; versus Wi, 0) [Wiminl = Winas versus Wipe: —, ryfry=1, a =1;
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Figure 5. Effect of thickness ratio on non-linear vibration of the first mode (0 = 45°/ —45°/45°, . = 1, r, = 10,
rx/ry = 1) (a) wnl/wl versus W ax, (b) IWl minl — Wimax versus Wy —— H = 0-01; -—--- , H=002----- 5

x > > x

Figure 3 shows the effect of radius of curvature on the non-linear dynamic properties of
a spherical symmetric laminated shallow shell (0 =45°/ —45°/45°). As the radius of
curvature increases, the hard-spring response becomes strong, and the soft-spring behavior
does not appear in the shells with r, > 25. However, it should be noted that there is the
difference | Wy ] — Wimax in the shells with r, > 25. Though the backbone curves for
r. = 100 almost agree with those for r, = 50, | W1 uinl — Wimax for ry = 50 is nearly the
double of that for r, = 100 during 1 < W . < 2.

In Figure 4 the effects of curvature ratio (r,/r,) and aspect ratio of a symmetric laminated
shallow shell with r, = 10 on the non-linear vibration is presented. It is significant to note
that r,/r, =1, 0 and —1 correspond to spherical, cylindrical and hyperbolic paraboloid
shells respectively. The backbone curves do not exhibit soft-spring behavior except the shell
with r./r, = 1 and o = 1. With decreases in the curvature ratio or increase in the aspect
ratio, the effect of quadratic non-linear term G, becomes smaller and |W .ial — W1 max
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TABLE 2

Frequency parameters wy of shallow shells used in Figures 2—-4

0 o I ry/ty w1 Figures

45°) —45°/45° 1 10 1 140-1 2,3, 4
0°/90°/0° 1 10 1 1509 2
45°) —45° 1 10 1 1293 2
0°/90° 1 10 1 1339 2
45°) —45°/45° 1 25 1 93-01 3
45°) —45°/45° 1 50 1 83-97 3
45°) —45°/45° 1 100 1 81-54 3
45°/ —45°/45° 1 10 0 103-2 4
45°) —45°/45° 1 10 -1 98-81 4
45°/ —45°/45° 1-5 10 1 178:6 4
45°) —45°/45° 2 10 1 2481 4

TABLE 3

Comparison of frequency parameters w, of symmetric angle-ply
laminated shallow shells (0 = 45°/ —45°/45°, r, =r, = 10,

a=1)
Wy
H CST FSDT
0-01 140-3 140-1
0-02 99-48 98-50
0-04 86:04 8177
01 81-86 63-16

decreases. Especially, there does not exist |W ,inl — Wi max fOr the hyperbolic paraboloid
shell (because of G, = 0).

Figure 5 shows the non-linear vibration characteristics for symmetric angle-ply
laminated shells with different thickness ratios. In order to examine the effect of the
transverse shear deformation, the results obtained by the FSDT (thick line) are compared
with those by the CST (thin line). The comparison of linear natural frequencies is tabulated
in Table 3. In Figure 5(a), »; denotes the linear natural frequency obtained by the FSDT. It
is seen in Figures 5(a) and 5(b) that the hard-spring behavior becomes stronger and
[W i minl — Wimax decreases with an increase of the thickness ratio. Further, with the
increase, the results obtained by the FSDT deviate from those by the CST, and it can be said
that the FSDT should be adopted for non-linear vibration analyses of moderately thick
shells (H > 0-04).

5.2. NON-LINEAR VIBRATION OF THE SECOND VIBRATION MODE

First of all, the influence of the first vibration mode on non-linear vibrations of the second
mode is examined. The two-mode analysis considering both W, and W, is compared in
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w

max

Figure 6. Comparison of single- and two-mode analyses on non-linear vibration of the second mode
(0 =45/ —45°/45°, a =1, 1, = 10, ry/r, = 1): (a) wu/w, versus Wy, (b) [Woil — Wy versus W0 ——,
two-mode analysis; ————— , single-mode analysis.

Figure 6 with the single-mode analysis neglecting W, (considering only W,). In this
calculation, we treat symmetric angle-ply laminated shells (0 = 45°/—45°/45°)
with H=001 and 01 and use IxJ=8x8. In Figure 6, W, is defined as
Wopax = (W1 4+ Wy)max, and solid and broken lines denote the results obtained by the two-
and single-mode analyses respectively. It is seen in Figure 6(a) that the frequency ratios
obtained by the single-mode analysis are smaller than those obtained by the two-mode
analysis. The difference between maximum and minimum displacements is shown in
Figure 6(b). The difference between them is considered in the two-mode analysis, but the
difference is neglected in the single-mode analysis (i.., | W,iu| = W,.ax)- Therefore, we can see
the necessity of the first vibration mode for studying non-linear dynamic properties of the
second vibration mode of the shell. Furthermore, because the errors on the backbone curve
and the difference, | W,.;,| — Wax, are more pronounced for the thin shell (H = 0-01) than
for the thick shell (H = 0-1), we conclude that the influence of the first vibration mode
becomes stronger for the thin shell than for thick shell.

The convergence of the present series solutions for linear and non-linear frequencies of
the second mode in the case of symmetric angle-ply laminated shells (6 = 45°/ —45°/45°)
with H = 0-01 and 01 is shown in Table 4. The maximum error between the last two
columns is less than 1%. In the calculation for the second mode, I x J = 8 x 8§ is used from
a practical point of view.

Figures 7, 8, 9 and 10 present, respectively, the effects of lamination sequence, radius of
curvature, and aspect ratios, and thickness ratio on the non-linear vibration of the second
mode. Tables 5 and 6 show the linear natural frequencies w, of the shells used in Figures
7-9 and 10 respectively. The linear natural frequencies of the second and third modes of
antisymmetric angle-ply (0 = 45°/ —45°) and asymmetric cross-ply (0 = 0°/90°) laminated
shells are close to each other when oo = 1. In order to examine the non-linear vibration of the
second mode of such shells, we must consider the third mode in the analysis. Since the
present paper does not treat the shells with one-to-one internal resonance, we use o = 125
in Figure 7.

It is found from Figures 7(a)-10(a) that all responses of the second mode are hard-spring
type because the frequency ratio w,;/w, increases with an increase of the amplitude. It is also
observed that a tendency on the frequency ratio of the second mode is different from that of
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TABLE 4

Convergence of frequency parameters on the second vibration mode of symmetric angle-ply
laminated shallow shells (0 = 45°/ —45°/45°, v, =r, = 10, a = 1)

Wy
H(= h/a) IxJ (Dz(iz) Wmax =1 Wmax =2
0-01 4x4 184-5 (184-5) 2484 3962
6x6 171-1 (171-0) 2744 467-4
8x8 171-0 (170-9) 2761 4711
10x 10 171-0 (170-9) 2767 4723
01 4x4 102-4 (101-1) 1899 3321
6x6 101-0 (99-65) 1986 3522
8x8 101-0 (99-62) 199-4 3539
10x 10 100-9 (99-62) 1992 3539
0-75

0-50

@, /o,
IWminl _Wmax

025

Figure 7. Effect of lamination sequence on non-linear vibration of the second mode (« = 1-25,r, = 10,r,/r, =1,

H = 0-01): (a) 0/; versus Wi, (b) | Wonin| — W versus W, ——, 0 = 45°/ —45°/45% - ——— - ,0 = 0°/90°/0°
_______ 0 = 45°) —45°% o 0 = 0°/90°.
3.0 T 0-6 !

@ ®) -]
:
o
;.g

Wlmax Wlmax

Figure 8. Effect of radius of curvature on non-linear vibration of the second mode (6 = 45°/ —45°/45°, . =1,
ro/ry =1, H=001): (a) wu/w, versus Wy, (b) [Woinl — Wiax versus Wt ——, 1 = 100; ————— , e = 50;
------- , =25 ——- == r, = 10.
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Figure 9. Effects of curvature and aspect ratios on non-linear vibration of the second mode (6 = 45°/ —45°/45°,
ry =10, H = 0-01): (a) w,y/w, versus W, (b) | Win| — Woay versus W0 ——, ryfr, =1L, a=1; ——r/r, =0,
a=1;---—- Sy =—loa=1;-——-— Sy =10 =15 vy fry =1, 0=2.

> Ax > > x

the first mode (For example, the frequency ratio at W,,,, = 2 of the first mode is larger in the
order of (0 = 45°/ —45°%) > (0 = 0°/90°) > (0 = 45°/ —45°/45°) > (0 = 0°/90°/0°) (Figure 2(a)),
while the order for the second mode is (0 = 0°/90°/0°) > (0 = 0°/90°) > (0 = 45°/ —45°/45°) >
(0 = 45°/ —45°) (Figure 7(a)).) Therefore, it can be concluded that the frequency ratio is also
dependent upon the vibration mode.

In contrast to the results of the frequency ratio, the results of the difference | W ,;u| — Winax
of the second mode are the same tendency as that of the first mode because the difference
decreases with an increase of radius of curvature (Figure 8(b)), the difference for the
hypabolic shell (r,/r, = — 1) becomes zero (Figures 9(b)) and so on.

Finally, we mention the effect of the transverse shear deformation on the non-linear
vibration of the second mode shown in Figure 10. In Figure 10, thick and thin lines denote
the results obtained by the FSDT and CST respectively. The comparison of linear natural
frequencies is shown in Table 6. From Figure 10 and Table 6, it is found that the larger the
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TABLE 5

Frequency parameters w, of shallow shells used in Figures 7-9

0 o I ry/ty W, Figures

45°) —45°/45° 1 10 1 171-0 8,9
45°) —45°/45° 1-25 10 1 1971 7
0°/90°/0° 125 10 1 186-7 7
45°/ —45° 1-25 10 1 1709 7
0°/90° 125 10 1 170-4 7
45°) —45°/45° 1 25 1 144-4 8
45°) —45°/45° 1 50 1 1402 8
45°) —45°/45° 1 100 1 1391 8
45°) —45°/45° 1 10 0 149-5 9
45°) —45°/45° 1 10 -1 1482 9
45°) —45°/45° 15 10 1 224-7 9
45°) —45°/45° 2 10 1 2967 9

TABLE 6

Comparison of frequency parameters w, of symmetric angle-ply
laminated shallow shells (0 = 45°/ —45°/45°, r,=r, =10,

a=1)
[2F)
H CST FSDT
0-01 171-6 171-0
0-02 1482 1455
0-04 1417 1316
01 1399 101-0

thickness ratio of the shell becomes, the larger the error between the FSDT and CST
solutions become. The tendency for the second mode is the same as that for the first
mode.

6. SUMMARY AND CONCLUSIONS

Non-linear vibration characteristics of the first and second (asymmetric first) vibration
modes of laminated shallow shells with rigidly clamped edges have been reported. In the
analysis, the displacements of the shell were approximated by the power series which are
eigenvectors of the first and second vibration modes calculated by the Ritz method (linear
analysis). We examined the convergence characteristics of series solutions, and showed that
linear and non-linear frequencies converged with an increase of the series.

It is explained clearly in the analysis that the modal interaction between the first and
second modes is induced by the quadratic non-linear terms. We investigated the influence of
the first mode on the non-linear vibration of the second mode, and revealed that the
difference did not occur in the single-mode analysis which considers only the second mode,
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while the difference occurred in the two-mode analysis which considers both the first
and second modes. Consequently, it can be said that the first vibration mode should
be considered to examine the non-linear vibration of asymmetric vibration modes
of shells.

In numerical examples, we demonstrated graphically the effects of lamination sequence,
radius of curvature, curvature ratio, aspect ratio and thickness ratio on the non-linear
vibration. We also compared the results obtained by the FSDT with those obtained by the
CST, and showed that the larger the thickness ratio became, the stronger the effect of the
transverse shear deformation became. The present paper paid attention not only to the
frequency ratio but also to the difference between maximum outward and inward
displacements.
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APPENDIX A

The elements in the matrices of equation (31) are as follows:

1 1
Ugiju = j J {ATI Usi, UpiUs, Uy + ATe0(Usi, UyiUsUpry + UsUy Us Uy
-1

-1

AS*.U 4U,;UsU,
+ A PUsUy UslUyy + —2 <42 & ﬂ}dﬁd

nl,n

1 1
Uijit = f J <AT2{XV§1VVIJ WUek.Up + AtV eVyiUs Up + A560° ViV, UslU,
-1 1

AS* V.V, Us U,
+ A¥aVe VyUaUpy + —22 jllr ;” & "1> dédy,
xl'y

1 1 A* A* A* A*
Udijr = J_ ) J_ 1 [( 2; ! 2;2> WeiW,iUs, Uy + o ( 2;6 2;6> WeiW,ijUaUp,y

A
o (SEsaWeW i UaUy + S5sWei JW,;UaUy)

—2H(1 — N{Bf 1 We eeW,jUsi Uyt + BE20 WeiW,yj 0 Usi eUy

+ Bt QWi Wiy Ust Uy + Wei oW iUslUy ) + B36o WeW 0 UaUyy

1 pt
Utll}ijkl =4 J J {Bfﬂﬁx.ﬁi,:lpxnchk.cUnz + Bl oo (Wi, W anjUsk Ui,y
—1

-1

S¥ lpx ilpx iUaU,
+ lpxéilpxnj,nUék,éUnl) + Bz6azl//xéilpxnj,nUékUnl,n — =35 é4H;_” k ”IZ} di df’],

1 1
Ugij = 4 J J (Bikzmﬁyci‘/fynj,nU:k,éUnz + Bie¥yei, eWniUsk,eUn
-1

-1

Sk Wyl yiUaU,
+ B36o® Yyl i g UscUpty + Bioyer ayniUaUppy — = yi”;zj . ”l> dcdn,

1 1
Ubiji = j J { 50 VeVaiVeaVun + A5V ViiVeaVun + VeaVujnVee V)
-1

-1

ASE, ViV, V.
+ Az()Véi,ganng@Vy,l + W}déd
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1 1 A* A* A* A*
Ul = J - J |:rx< 2;; + 2r2y2> WWoiVaVn + ( 2;6 + 2;;) WeiW,iUs, Uy

-1

A
5 (STaW Wi VaVy + SEsWei WiV aVi)
y

nl,n

+ BieWei, cWoUsi Uy + B30 (WeW i Ve eV + 2Wei Wi VaV i)
1 1
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1 1
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-1
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+ 2D360> (Wi Wi aWaW o + WeiW i qW e W 1.)

1t
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-1

S* l//x ilpx 'lpx lpx
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1 1
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-1 -1
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r1 r1
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where

A= 1 for FSDT,
“ 10 for CST.
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